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1. VARIABLES- QUALITATIVE AND QUANTITATIVE 

 
A variable is any measured characteristic or attribute that differs for 
different subjects. For example, if the length of 30 desks were measured, then 
length would be a variable. 
 
Key Learning Skills –  

• Understand the difference between a qualitative (categorical) variable 
and a quantitative variable.  

• Understand the types of qualitative (categorical) variables: Nominal, 
Ordinal, and Binary. 

• Understand the difference between a discrete and a continuous 
quantitative variable.  

 
Terms and Definitions: 
 
1.1 Qualitative Data (Categorical Variables or Attributes)  

 
Qualitative data involves assigning non-numerical items into groups or 
categories. Qualitative data also are referred to as categorical data. The 
qualitative characteristic or classification group of an item is an attribute. 
Some examples of qualitative data are: 

• The pizza was delivered on time.  
• Categorical Variable: Delivery Result 
• Attribute: On Time, Not On Time 

• The survey responses include disagree, neutral, or agree.  
• Categorical Variable: Survey Response 
• Attribute: Disagree, Neutral, Agree 

• This car comes in black, white, red, blue, or yellow.  
• Categorical Variable: Color  
• Attribute: Black, White, Red, Blue, or Yellow. 

 
Categorical variables are typically assigned attributes using a nominal, 
ordinal, or binary scale.   

• Nominal variables are categorical variables that have three or 
more possible levels with no natural ordering. Car color would be 
considered a nominal variable. Again, in a nominal scale, no 
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quantitative information is conveyed and no ordering of the items 
is implied. Other examples of nominal scales include religious 
preference, production facility, and organizational function. 

• Ordinal variables are categorical variables that have three or more 
possible levels with a natural ordering, such as strongly disagree, 
disagree, neutral, agree, and strongly agree. With ordinal data, 
quality analysts often convert it to a quantitative scale. For 
example, a survey may assign a scale from 1-5 to cover the range 
from strongly disagree, to neutral, to strongly agree. When 
converting an ordinal categorical variable to a quantitative scale, a 
quality analyst must exercise caution in the interpretation of the 
difference between values. For instance, the difference between 
the responses strongly disagree (1) and disagree (2) may not equal 
the difference between disagree (2) and neutral (3). 

• Binary variables are categorical variables that have two possible 
levels (e.g., yes/no). Binary variables are the most common type of 
categorical variables because they are the easiest to convert to a 
quantitative scale. Binary variables typically are assigned a 0 (e.g., 
defective) or 1 (e.g., not defective). This use of the 0 / 1 
designation allows experimenters to use proportions or counts for 
data analysis. As a general rule, the desired outcome is assigned 
the 1.  

 
1.2 Quantitative Data  

 
Quantitative Data result from measurement or numerical estimation. These 
measurements yield discrete or continuous variables. Discrete variables 
vary only by whole numbers such as the number of students in a class 
(variable: class size). Continuous variables vary to any degree, limited only by 
the precision of the measurement system. Some examples include the width 
of a desk, the time to complete a task, or the height of students (variables: 
length, time, and height).  In the case of measuring the width of a desk, the 
measurement could read 1.54 m, or 1.541 m, or 1.5409, or 1.54087, ... Here, 
the observed measurement is limited only by the precision of the 
measurement instrument. 
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Some additional examples of continuous quantitative measurements are: 
• The time to deliver the pizza was 26.7 minutes. 
• The diameter of the cylinder was 83.1 mm. 

 
In converting a categorical variable to a quantitative scale, the variable is 
typically treated as a discrete variable. For example, a rating scale from 1 to 
5 or a binary scale of 0 or 1 would be analyzed as a discrete variable. In 
computing a statistic for a discrete variable such as the average survey 
response, the statistic (e.g., the average) is considered continuous. So, the 
average for a 5-points scale might be 3.72 even though this particular value 
is not possible to obtain. 
 
For analysis purposes, discrete variables often are approximated using 
continuous distributions. For instance, suppose student test scores are 
discrete ranging from 0 to 100 points. Here, we might assume the 
distribution of test scores follows a normal distribution (continuous) in order 
to estimate the likelihood of a student scoring greater than a 70.    
 
In general, analysts try to convert all data to an approximately continuous, 
numerical scale for making inferences or conclusions.  
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2. DESCRIPTIVE STATISTICS 

 
Descriptive statistics are used to summarize the characteristics of a data set. 

 
Key Learning Skills –  

• Understand the difference between a sample and a population.  
• Understand the difference between a parameter and a statistic.  
• Compute the mean, median, standard deviation, variance and the range 

for a sample data set. 
 

Terms and Definitions: 
 
2.1 Sample Data versus Population Data  

 
A population data set includes all items of the set, such as the height of 
every person in the United States, or the volume of every can of soda pop 
that a manufacturer produces. If the desired information is available for all 
items in the population, we have what is referred to as a census. In practice, 
we rarely have a complete set of data. We usually collect data in samples, 
such as the volumes of the last thirty cans of pop.  
 

2.2 Parameters and Statistics  
 
Numbers used to describe a population are parameters and often are 
denoted using Greek letters. Numbers used to describe a sample data set 
are called statistics. A Statistic may be used to estimate a population 
parameter such as the average of a data set ( µ̂  orX ) provides an estimate 
of the population mean, µ.   
 
The difference between a statistic and a parameter is important to 
understand because in statistical data analysis we often make inferences 
about a population based on sample statistics. Since we rarely know every 
observation in a population, any conclusions or recommendations that are 
made based on sample statistics are subject to error. However, we typically 
will accept some margin of error rather than incur the cost of measuring 
every observation. 
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2.3 Location Statistics (measures of central tendency) 
 
Mean (also known as the average) is a measure of the center of a 
distribution.  
 

 
N

XXX
Mean N...21 ++

=  X as  toreferred also isMean  :Note  

 
The typical notation used to represent the mean of a sample of data is X ; 
the Greek letter µ is used to represent the mean of a population. The terms, 

µ̂  orX , represent the estimate of the population mean.    
 
Example: suppose five students take a test and their scores are 70, 68, 71, 
69 and 98. 
 
 Mean = (70+68+71+69+98)/5 = 75.2 
 
Notice: the mean may be strongly influenced by extreme values. If we 
excluded the student whose score was a 98, the mean would change to 69.5. 

 
Median (also known as the 50th percentile) is the middle observation in a 
data set. To determine the median, we rank the data set and then select the 
middle value. If the data set has an odd number of observations, the middle 
value is the observation number [N + 1] / 2. If the data set has an even 
number of observations, the middle value is extrapolated as midway between 
observation numbers N / 2 and [N / 2] + 1. 
 
In the above example, the data ranked is 68, 69, 70, 71, and 98. Here, the 
median is 70. If another student with a score of 60 was included, the new 
median would 69.5 (69 + 70 / 2).  
 
The median is often used if the data has extreme values (outliers) or is 
skewed (e.g., if one of the tails of a bell-shaped curve is significantly longer 
than the other). In the above example of student test scores, the median 
provides a better representation of the center of the distribution since 98 
is an extreme value.  
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2.4 Dispersion Statistics (measures of variability) 
 
Standard deviation (StDev) measures the dispersion of the individual 
observations from the mean. In a sample data set, the standard deviation is 
also referred to as the sample standard deviation or the root-mean-square 
Srms and may be calculated using the following formula. 
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Note: to compute the population standard deviation, we use the population 
mean and divide by n instead of n-1.  In practice, the population standard 
deviation is rarely used because the true population mean is usually unknown.  
The use of the sample standard deviation is particularly important for 
smaller sample sizes. However, as the sample size gets large (say n > 100), 
the difference between dividing by n versus n-1 may become negligible. 
 
The typical notation used to represent the sample standard deviation is S; 
the Greek letter σ is used to represent the population standard deviation. 
The terms, S or σ̂ , represent the estimate of the population standard 
deviation.    
 
In the example with the five student test scores (70, 68, 71, 69 and 98), the 
sample standard deviation is 12.79. 
 
Similar to the mean, the standard deviation may be strongly influenced by 
extreme values. If we exclude the student whose score was a 98, the sample 
standard deviation would be reduced to 1.3! 
 
Variance is sometimes used to represent dispersion. The variance is simply 
the standard deviation squared. The variance represents the average 
squared deviation from the mean.  
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Above Example:  Variance = (12.79)2 = 163.72 
 
Note: the variance is often used because of its additive property. If several 
independent factors contribute to the overall variance, then the total 
variance may be determined by adding the individual factor variances 
(assuming the factors are independent). Note: we do not add standard 
deviations!  
 
Range is another measure of dispersion. The range is simply the maximum 
value in a data set minus the minimum value. In the above example, the range 
of (70, 68, 71, 69 and 98) is  (98 - 68 = 30). 
 
Note: the range is sometime preferred over the standard deviation to 
represent dispersion for small data sets (e.g., # of samples < 10). 
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3. FREQUENCY DISTRIBUTIONS 

 
Frequency is used to describe the number of times a value or a range of values 
occurs in a data set. Cumulative frequencies are used to describe the number of 
observations less than, or greater than a specific value.  

 
Key Learning Skills –  

• Understand the difference between absolute, relative, and cumulative 
frequencies.  

• Generate a frequency table. 
• Generate a histogram. 

 
Terms and Definitions: 
 
3.1 Frequency Measures 

 
Absolute frequency is the number of times a value or range of values occurs 
in a data set. The relative frequency is found by dividing the absolute 
frequency by the total number of observations (n). The cumulative frequency 
is the successive sums of absolute frequencies. The cumulative relative 
frequency is the successive sum of cumulative frequencies divided by the 
total number of observations. 
 
To demonstrate the differences between these terms, consider the results 
of throwing a pair of dice. The possible combinations and their sums are 
shown in the following frequency table. Four measures of frequency are 
shown: absolute frequency, cumulative frequency, relative frequency, and 
cumulative relative frequency.  
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Frequency Table 

Combination Sum Absolute 
Frequency 

Cumulative 
Frequency 

Relative 
Freq 

Cum. 
Rel. 

Freq, 
(1,1) 2 1 1 0.03 0.03 
(1,2) (2,1)  3 2 3 0.06 0.08 
(1,3) (3,1) (2,2)  4 3 6 0.08 0.17 
(1,4) (4,1) (2,3) (3,2)  5 4 10 0.11 0.28 
(1,5) (5,1) (2,4) (4,2) 
(3,3) 

6 5 15 0.14 0.42 

(1,6) (6,1) (2,5) (5,2) 
(3,4) (4,3) 

7 6 21 0.17 0.58 

(2,6) (6,2) (3,5) (5,3) 
(4,4)  

8 5 26 0.14 0.72 

(3,6) (6,3) (4,5) (5,4)  9 4 30 0.11 0.83 
(4,6) (6,4) (5,5)  10 3 33 0.08 0.92 
(5,6) (6,5)  11 2 35 0.06 0.97 
(6,6)  12 1 36 0.03 1.00 
 Total 36    
 
3.2 Histogram  
 

A histogram is a graphical representation of a frequency table. Histograms 
also are used to show the shape of a distribution. Some common shapes are 
bell-shaped (i.e., normal), exponential or skewed. Skewed distributions are 
similar to normal distributions only one tail is significantly larger than the 
other. For example, a skewed right distribution has a basic bell-shaped curve 
with a longer tail on the right (or on the left). The figure below shows each 
of these shapes. 
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Some Example Histogram Shapes 

 
In a histogram, each column represents the absolute frequency or relative 
frequency for a particular combination or occurrences in a data set of a 
single variable. Histograms may be used for discrete or continuous variables.  
 
3.3 Discrete Histogram  

Example: Possible Combinations for Sum of Pair of Dice 
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3.4 Continuous Data Histogram 
 
To demonstrate a continuous data histogram, suppose you obtain the 
following data set by measuring the diameter of 100 bicycle seat posts.  

 

 
  

First, arrange the data into frequency or bin ranges of equal width. The 
selection of the number and width of the bins (frequency ranges) is 
dependent on the analyst. For continuous data, a general rule of thumb is to 
set the number of bins equal to the square root of the number of samples 
(rounded to nearest whole number). To obtain the bin width, divide the range 
of the data set by the number of bins (rounded to desired precision of 
measurement data). This example has 100 samples and a range of 0.23. Thus, 
an analyst might create 10 bins (=sqrt(100)) of width 0.02 mm (0.23/10 = 
0.02). In this example, the value 25.34 was chosen as the starting point 
because relatively few values are below it. 
 

25.36 25.34 25.39 25.45 25.37
25.36 25.40 25.35 25.36 25.37
25.40 25.41 25.41 25.35 25.38
25.39 25.39 25.37 25.44 25.42
25.40 25.36 25.37 25.39 25.39
25.40 25.38 25.33 25.36 25.43
25.42 25.41 25.41 25.37 25.40
25.47 25.41 25.32 25.46 25.40
25.39 25.42 25.41 25.42 25.35
25.42 25.41 25.42 25.41 25.46
25.40 25.40 25.43 25.36 25.41
25.44 25.46 25.41 25.37 25.36
25.38 25.50 25.38 25.40 25.40
25.40 25.39 25.36 25.36 25.44
25.38 25.38 25.39 25.40 25.35
25.41 25.34 25.39 25.40 25.34
25.55 25.43 25.42 25.41 25.39
25.40 25.36 25.42 25.41 25.45
25.45 25.39 25.40 25.36 25.41
25.35 25.43 25.40 25.38 25.38
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Bin Range Absolute 
Frequency 

Cumulative 
Frequency 

 < 25.34 3 3 
25.34 < X <= 25.36 13 16 
25.36 < X <= 25.38 14 30 
25.38 < X <= 25.4 24 54 

25.40  < X <= 25.42 27 81 
25.42 < X <= 25.44 6 87 
25.44 < X <= 25.46 9 96 
25.46 < X <= 25.48 2 98 
25.48 < X <= 25.5 1 99 

X > 25.50 1 100 
 

 
Interpreting a Continuous Data Histogram – the absolute frequencies in a 
continuous data histogram represent the number of observations that fall 
within a range. In the graph above, the first column (labeled 25.34) 
represents the number of observations less than or equal to 25.34. The 
second column (labeled 25.36) represents the number of observations 
greater than 25.34 and less than or equal to 25.36. The third column is the 
number of observations greater than 25.36 and less than or equal to 25.38. 
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4. PROBABILITY AND ERROR 

 
Probability describes the likelihood that an event will occur. An event may 
represent an outcome such as the probability of rolling a three with a dice, or it 
could represent a recommendation or decision from an analysis, such as two 
machines produce different outputs. In thi s case, probability is used to convey 
confidence or risk in the result or conclusion. 

 
Key Learning Skills –  

• Understand difference between a priori probability and empirical 
probability. 

• Understand basic probability concepts and rules. 
• Understand type I and type II errors. 

 
Terms and Definitions: 
 
4.1 Probability Properties 
 

Probability is the likelihood that an event will occur. Probabilities are 
expressed as values between 0 and 1 where 0 is the null probability and 1 is 
certainty.  
 
In a probability assessment, the event may be either desired or not desired. 
For instance, we might be interested in the probability that a part, 
measured at random, is within its specification limits, or not within its 
specification limits. 
 
Methods Used to Calculate Probability 
 
• A Priori Probability – may be derived before data are collected. 

(Often used if data are discrete and the possible outcomes are finite, 
such as in games of chance.) 

 
• Empirical Probability – is estimated from a sample data set. (Often used 

in industrial and experimental situations where data are continuous and 
the underlying nature of events is unknown.) 
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A Priori Probability may be obtained if all possible events and outcomes may 
be enumerated or mathematically described. The a priori probability may be 
determined using the following formula: 
 
P = E / N 
Where: 
P = probability  
E = number of cases in which a desired event or outcome occurs 
N = total number of possible cases. 
 
In the dice example from the prior section, the probability a person will roll 
a seven using a pair of dice is. 
 
P = 6 / 36 = 0.17  (Note: (1,6) (6,1) (2,5) (5,2) (3,4) (4,3) are six out of 
thirty-six possible combinations whose sum equals seven.) 
 
Similarly, the probability a person will roll a seven or less using a pair of dice 
is:  
 
P = 21 /36 =0.58 
 

 
Empirical Probability – In most cases, either the number of times an event 
might occur or the total number of possible outcomes is unknown. For 
example, if data are sampled from a continuous distribution such as 
measuring the height of twelve-year old boys, both the possible number of 
occurrences of each height and the total number of possible outcomes are 
unknown. Here, the probability of an event, such as the likelihood that a 
twelve year-old boy is taller than 60 inches must be derived empirically 
based on sampling.  
 
A common method for empirically estimating probabilities is to sample data 
and then fit the data into a statistical distribution. Given a statistical 
distribution, the probability of an event may be derived using estimates of 
the distribution parameters. The most widely used distribution for 
estimating probabilities is the Normal Distribution.  (See Section on Normal 
Distribution.) 
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4.2 Type I and II Errors 
 
Probability is often used to convey confidence or assess risk when making a 
decision or recommendation from a statistical analysis. For example, a 
company may decide to inspect 100% of their products if they find a defect 
in a random sample of ten finished products. Or, they may decide to re-
calibrate a machine if they determine from a sampling of products across 
several machines that a particular machine is producing a different mean. 
 
In performing a statistical analysis, an experimenter must begin with a claim 
or statistical hypothesis. This claim or hypothesis is what you assume to be 
true. In assessing claim, four possible outcomes may result: 

a. Conclude the claim is true, when it actually is true 
b. Conclude the claim is false, when it actually is true. 
c. Conclude the claim is true, when it actually is false. 
d. Conclude the claim is false, when it actually is false. 

 
Of the above outcomes, two of them (b and c) are errors. These errors are 
referred to as Type I (alpha) or Type II (beta) errors.  
 
• Type I error (alpha error) – occurs when one concludes something is not 

true (e.g., say different) when in fact it is true (truth = not different). 
For example, a Type I error might occur if the particular parts sampled 
are not representative of the distribution such as if a part is not 
measured correctly. Here, an analysis might show to adjust machine 
settings to correct a perceived problem when in fact the machine is 
working properly. 

 
• Type II error (Beta risk) – occurs when one concludes something is true 

(e.g., say not different) when in fact it is false (i.e., different).  
 
A jury trial offers a good analogy for comparing Type I and II errors. In a 
jury trial, four possible outcomes may occur: an innocent person may be 
found innocent, an innocent person may be found guilty, a guilty person may 
be found innocent, and a guilty person may be found guilty. These outcomes 
and their associated statistical terms are shown below. 
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  Truth 
  Innocent 

(true or not 
different) 

Guilty 
(false or 

different) 
Innocent  

(true or not 
different) 

Correct 
Conclusion  

(1 – α) 

Type II error 
(beta risk– β) Say or 

Conclude Guilty 
(false or different) Type I error 

(alpha – α) 

Correct 
Conclusion 

(1 – β = Power) 
 

The probability of making a Type I error is controlled by establishing a 
probability threshold known as the alpha error. Some typical levels of alpha 
are 0.05 or 0.01. Here, the confidence of making the right decision is 1 – 
alpha. For these alpha values, we may want to be 95% or 99% confident in 
our decision. In other words, we may want to be at least 95% confident that 
if we accept a claim as true, that it is true. 
 
The probability of making a Type II error is usually controlled by the 
selection of an appropriate sample size. In general, the larger the sample 
size, the greater the ability to detect a difference. Thus, increasing sample 
size results in greater power in making a correct decision. The probability of 
finding a difference (e.g., say different) when a difference actually exists is 
known as statistical power (1-β). In other words, we may want to have at 
least 90% power that if we suggest a claim is false, that it is false. 
 
Jury Trial Error Analogy 
 
As with jury trials, the willingness to accept risk (alpha error) is highly 
dependent on the significance of the outcome. For example, in the U.S. legal 
system, a greater concern exists for Type I errors in high crimes. The U.S. 
system would rather conclude the innocence of a guilty person, than convict 
people that are innocent. To reduce the Type I error in a high crime, U.S. 
system requires a unanimous jury decision. In contrast, a review of the 
interpretation of a law by a panel of judges may only require a majority. 
Here, the legal system is willing to accept greater risk of a Type I error. 
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4.3 p-values and statistical significance 
 
When conducting a statistical analysis, the p-value is used to represent the 
probability that no difference exists (for example, two machines are not 
producing statistically different mean outputs). A common method for 
determining significance in a statistical comparison is to conclude a 
difference exists if the p-value is less than the alpha error level.   
 
For example, suppose you determine in a comparison of two bottle-filling 
machines that the probability that the two means are not different is 0.24. 
Assuming alpha = 0.05, you would conclude that the two means are not 
different. However, if the p-value is 0.003, you would conclude that the 
means are different. In this example, you are 99.7% confident that you are 
making the correct decision. 
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5. NORMAL DISTRIBUTION 

 
The Normal distribution, visually resembling a smooth, symmetrical, bell-shaped 
curve, represents a commonly found pattern of randomly measured data. It is 
used to describe a great variety of situations such as intelligence test results, 
part measurements from automatic machines, measurement errors from a gage, 
etc. In fact, the failure to find a normal distribution when studying a continuous 
process often suggests that some factor is exerting an unusual amount of 
influence on the process (special cause of variation exists). 

 
Key Learning Skills –  

• Understand Some Common Properties of Normal Distribution and the 
Standard Normal Distribution. 

• Estimate the probability of an event given that the observed data follow 
a normal distribution. 

 
5.1 Properties of the Normal Distribution 

 
The figure below shows a normal distribution. In a normal distribution, the 
mean, median, and mode all coincide. In addition, the number of standard 
deviations about the mean may be represented by probabilities. For example, 
if data are normally distributed, then 99.73% of values should fall between 
+/- 3σ. 

Properties of a Normal Distribution 
 

−3σ −2σ −1σ −1σ −2σ −3σ

+/- 1σ = 68.26%
+/- 2σ = 95.46%
+/- 3σ = 99.73%

−3σ −2σ −1σ +1σ +2σ +3σ

+/- 1σ = 68.26%
+/- 2σ = 95.46%
+/- 3σ = 99.73%

−3σ −2σ −1σ −1σ −2σ −3σ

+/- 1σ = 68.26%
+/- 2σ = 95.46%
+/- 3σ = 99.73%

−3σ −2σ −1σ +1σ +2σ +3σ

+/- 1σ = 68.26%
+/- 2σ = 95.46%
+/- 3σ = 99.73%

−3σ −2σ −1σ +1σ +2σ +3σ

+/- 1σ = 68.26%
+/- 2σ = 95.46%
+/- 3σ = 99.73%
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5.2 Estimating Probabilities Using Normal Distribution 
 

If data are normally distributed (or reasonably assumed to be normal), event 
probabilities may be empirically derived based on parameter estimates. To 
use the normal distribution, values are first converted to standardized Z 
scores. To standardize data, we use the following transformation: 

 
 Z = (X – µ) / σ 

 
Z scores transform data into the standard cumulative normal distribution 
whose mean = 0, and variance (σ2) = 1. Z-scores provide a mapping from a 
distribution of some variable to a standardized scale. These mappings 
reflect the difference in terms of number of standard deviations away from 
the mean. If the mean of a process = 4 mm and the standard deviation = 1, 
then an observed value of 1 could also be represented as –3*standard 
deviation from the mean. For this example, a Z = -3 is equivalent to an actual 
observation of 1 (where Z = –3*standard deviation away from the mean). 
 
By standardizing data, the probability of an event may be obtained by using 
the Z-scores. For example, suppose you wanted to compute the probability 
that a value falls between 4 and 16 given a mean = 10 and a standard 
deviation = 2. 
 
 Pr (4 < X < 16) = Pr (X < 16) – Pr (X < 4) 
  
 Z (X = 4) = (4 – 10) / 2 = -3.0 
 Z (X = 16) = (16 – 10) / 2 = 3.0 
 
 Pr (Z< -3.0) = 0.00135  

(See appendix for Standardize Normal Curve Table) 
 

 Pr (Z< 3.0) = 0.99865 (or 1 – 0.00135)  
(See appendix for Standardize Normal Curve Table) 
 
Pr (Z < 3) – Pr (Z < -3) = 0.99865 – 0.00135 = 0.9973 
 
Thus, 99.73% of values will fall between +/- 3σ. 
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5.3 Calculating Parts Per Million Defects Given Normal Distribution 
 

If data are normally distributed, parts per million defects may be estimated 
using the standardized normal curve. The following process provides a step-
by-step process for calculating parts per million defects assuming that the 
data follow a normal distribution and the process has a bilateral tolerance.  

 
Step 1: Obtain necessary input data information. 

• Specifications: Target, Upper Specification Limit (USL), and the 
Lower Specification Limit (LSL). 

• Summary Statistics from Data Set: Estimate of the Sample Mean and 
Standard Deviation. 

 
Example: Suppose you are trying to bicycle seats whose diameter 
specification is 25.4 +/- 0.05. You sample 100 parts and obtain a mean = 
25.41 and sample standard deviation = 0.02. 
 
Target = 25.4; USL = 25.45; LSL = 25.35; Mean = 25.41; Std Dev = 0.02 

 
Step 2: Pictorially show the USL, LSL, Target, Mean, and Std Deviation  
 
TIP: identify whether the mean is closer to the USL or the LSL as the 
defects per million should be greater on the side that is closest to the mean.  
 
Example: graph of the above problem. 

 

 
 

Target
25.4

USL = 25.45LSL = 24.35

Mean = 25.41

Target
25.4

USL = 25.45LSL = 24.35

Mean = 25.41
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Step 3: Calculate the probability of a defect above the USL and below 
the LSL.  

 
 

3a. Calculate Pr(Defect > USL). To obtain the probability that a part will 
be greater than the USL, we need to calculate a Z-value for the USL (Zusl) 
and look up the probability in a normal probability table. Note: we may also 
use an Excel built-in function to obtain this probability.  

 
 Compute Zusl = (USL – Mean) / std deviation 
 From Zusl, we may determine the Pr (Defect > USL). 
 Pr (Defect > USL) = 1 – Pr(Z<Zusl). 

  
Normal probability tables are presented as the probability from negative 
infinity to Z. Thus, for calculating defects greater than the USL, we need to 
let Pr (Defect > USL) = 1 – Pr (Z < Zusl). Pr(Z < Zusl) is obtained by looking up 
the value for Zusl in a normal probability table. 

 
 

Example:  
Target = 25.4; USL = 25.45; LSL = 25.35;  
Mean = 25.41; Std Dev = 0.02 

 
Zusl = (25.45 – 25.41) / 0.02 = 2.00 

 
Pr (Z < Zusl) = 0.97725  (based on Normal Table where Zusl = 2.0) 

 Alternatively in Excel:  =normsdist(2.0)    à  0.97725   
 

Pr (Defect > USL) = 1 – Pr (Z < Zusl) = 1 – 0.97725 = 0.02275 
 

 

USL

Pr[Z > Zusl]
= 1 - Pr[Z < Zusl)

LSL

Pr[Z < Zlsl]

DEFECT
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3b. Calculate Pr(Defect < LSL). To obtain the probability that a part will 
be less than the LSL, we need to calculate a Z-value for the LSL (Zlsl) and 
look up the probability in a normal probability table. Note: we may also use an 
Excel built-in function to obtain this probability.  
 
 Compute Zlsl = (LSL – Mean) / std deviation 
 From Zlsl, we may determine the Pr (Defect < LSL). 
 Pr (Defect < LSL) = Pr(Z< Zlsl). 

  
Normal probability tables are presented as the probability from negative 
infinity to Z. Thus, for calculating defects less than the LSL, we need to let 
Pr (Defect < LSL) = Pr (Z< Zlsl). Pr(Z < Zlsl) is obtained by looking up the 
value for Zlsl in a normal probability table. 

 
Example:  
Target = 25.4; USL = 25.45; LSL = 25.35;  
Mean = 25.41; Std Dev = 0.02 
 
Zlsl = (25.35 – 25.41) / 0.02 = -3.00 
 
Pr (Z < Zlsl) = 0.00135  (based on Normal Table Lookup where Z = -3.0) 
Alternatively in Excel:  =normsdist(-3.0)    à  0.00135   
 
Pr (Defect < LSL) = 0.00135 
 

 
Step 4: Calculate the probability of a defect.  

 
 Pr (Defect) = Pr (Defect > USL) + Pr (Defect < LSL) 
 
 Example: Pr (Defect) = 0.02275 + 0.00135 = 0.02410 

 
Step 5: Calculate the Actual DPM 

 
 Actual DPM = Pr (Defect) * 1,000,000 
 
 Example: Actual DPM = 0.02410 * 1M = 24,100 DPM 
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Calculating Potential DPM:  
 
We may want to calculate the Potential DPM, which represents the DPM that 
could be achieved if the process mean is shifted to the target value and the 
standard deviation does not change. To compute the potential DPM, repeat 
the above steps but substitute the target value for the mean. Note: Pr 
(Defect < LSL) should be equal to Pr (Defect > USL) if your target value is at 
the center of the USL and LSL. Also, your potential DPM should be less than 
your actual DPM if your current mean is not equal to your target value. 

 
Example:  

 Zusl = (25.45 – 25.4) / 0.02 = 2.5  (table lookup à 0.99379) 
 Pr (Defect > USL) = 1- 0.99379 = 0.00621 
  

Zlsl = (25.35 – 25.4) / 0.02 = -2.5  (table lookup à 0.00621) 
 Pr (Defect < LSL) = 0.00621 
 
 Pr (Defect) = 0.00621 + 0.00621 = 0.01242 
 
 DPM = 0.01242 * 1 M = 12,420 DPM 
 

COMMENT: For this example, shifting the mean to the target value 
(given the same standard deviation) could potentially reduce the DPM by 
approximately one-half (24,100 to 12,420). 
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6. LINEAR REGRESSION ANALYSIS 

 
Regression is used to describe relationships between variables.  

 
Key Learning Skills –  

• Compute the slope and y-intercept using a simple linear regression. 
• Compute and interpret simple correlation coefficient. 
• Understand the difference between simple linear regression and multiple 

linear regression. 
 

Terms and Definitions: 
 
6.1 General Regression equation 
 

The regression equation is used to describe the relationship between the 
response variables and predictor(s). The general equation is:  
 
Y = βo + β1X1 + β2 X2  + ...  β n Xn 
 
Y – represents the response variable. 
βo – represents the Y-intercept (value of response when predictor(s) 
variable = 0). 
β (1..n) - is the slope or rate of change of each predictor variable. 
X(1..n) - is the value of each predictor variable.  
 
 

6.2 Simple linear regression 
 
Simple linear regression examines the linear relationship between two 
variables: one response (y) and one predictor (x). If the two variables are 
related, the regression equation may be used to predict a response value 
given a predictor value with better than random chance. The simple linear 
regression equation is: 
 

Y = βo + β1X1 
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The most common method used to determine the line that “best” fits data is 
Least Squares Regression, which minimizes the squared deviations between 
individual observations and the regression line. 
 
The equations used to compute the slope (β1) and Y-intercept (βo) are: 
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Note: n is the number of samples. 
 
Alternatively, you could use the excel functions =slope(Y-array,X-array) and 
=intercept(Y-array,X-array). For example, if the Y-variable data are in Excel 
work cells B2:B10 and the X-variable data are in cells A2:A10, then the 
formula would be =slope(B2:B10,A2:A10). 
 
Simple Linear Regression Example 
 
Suppose you conduct an experiment to examine the relationships between 
bicycle tire pressure, tire width, and the coefficient of rolling friction. From 
experiments, you obtain the following: 
 

Coefficient of Rolling Friction for Bicycle Tires 
Pressure (PSI) Width=1.25" Width= 2" 

20 0.0100 0.0107 
25 0.0095 0.0100 
30 0.0088 0.0093 
35 0.0081 0.0086 
40 0.0074 0.0079 
45 0.0067 0.0073 
50 0.0060 0.0071 
55 0.0058 0.0068 
60 0.0056 0.0066 
65 0.0054 0.0063 
70 0.0052 0.0061 
75 0.0050 0.0058 
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Given these data, estimate the slope and Y-intercept for both variables. 
 

Using excel, the following results may be obtained. 
 

 Width=1.25" Width= 2" 
slope -0.0001 -0.0001 

intercept 0.0115 0.0118 

 
 

6.3 Correlation 
 
The Pearson correlation coefficient measures the extent to which two 
continuous variables are linearly related. For example, you may want to 
measure the correlation between tire pressure and the coefficient of rolling 
friction in the above example.  
 
Simple correlation may be measured using the following equation: 
 

 
Using excel, =correl(Yarray,Xarray) 
 
The correlation coefficient, R, consists of a value between –1 and 1. Perfect 
correlation (either –1 or 1) occurs when every observation in a sample falls 
exactly on the predicted line (i.e., no error).  
 
Strong positive correlation (value approaching 1) exists when both variables 
increase or decrease concurrently. A correlation value, R, which is greater 
than 0.7, typically indicates a strong positive relationship. 
 
Strong negative correlation (value approaching –1) exists if one variable 
increases while the other variable decreases. A correlation value, R, which is 
less than -0.7, typically indicates a strong negative relationship. 
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6.4 Using Scatter Plots to Show Linear Relationships 
 

A scatter plot is an effective tool for viewing the strength (strong – weak 
correlation) and direction (positive and negative). The figures below show 
several examples with different correlation coefficients. 
 

 
Note: If two variables are normally distributed with no correlation (i.e., 
R=0), the resulting figure will resemble a circle. 
 
Interpreting Correlation Coefficients 
 
When drawing conclusions based on correlation coefficients, several 
important items must be considered:  
 

• Correlation coefficients only measure linear relationships. A 
meaningful nonlinear relationship can exist even if the correlation 
coefficient is 0. 

 
• Correlation does NOT always indicate cause and effect. One should 

not conclude that changes to one variable cause changes in another. 
Properly controlled experiments are needed to verify that a 
correlation relationship indicates causation.  

a) Perfect Positive Correlation (R  = 1.0) b) Perfect Negative Correlation (R  = -1.0)

c) Strong Positive Correlation (R  = 0.7) d) Strong Negative Correlation (R  = -0.7)
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• A correlation coefficient is very sensitive to extreme values. A single 

value that is very different from the others in a data set can change 
the value of the coefficient a great deal. In the example below, the 
correlation is 0.9, but the scatter plot suggests that an outlier more 
likely explains the relationship that the predictor variable. If you 
removed the outlier value, the correlation between these two variable 
would drop to 0.1 over the smaller range of X. 

 
6.5 Multiple linear regression 

 
Multiple linear regression examines the linear relationships between one 
continuous response and two or more predictors. If the response and 
predictor variables are related, the regression equation may be used to 
predict a response value given predictor values with better than random 
chance.  
 
When using multiple linear regression, one should exercise caution if the 
number of predictors is large, particularly in relation to the sample size. For 
example, trying to fit a multiple regression model with 5 predictor variables 
and only 10 data points is likely to yield problems, especially if the predictor 
variables are not independent of each other (i.e., no relationship). Here, one 
should reference a more advanced regression technique. 
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A. PRACTICE TEST 
 

In making calculations, feel free to use a calculator or software (Excel or Minitab). The answers 
also are available in an appendix. Note: these problems are based on this probability and 
statistics review manual.  

 
Descriptive Statistics 

 
Use this information from UM’s 11-game football season to answer the following: 

 
University of Michigan - Football Statistics by Game (Year 

2000) 
      

Game UM-
Score 

Opp-
Score 

Point 
Difference 

UM 
Offense 

Opponent 
Offense 

1 42 7 35 554 271 
2 38 7 31 396 271 
3 20 23 -3 374 394 
4 35 31 4 513 447 
5 13 10 3 375 278 
6 31 32 -1 430 530 
7 58 0 58 562 190 
8 14 0 14 326 355 
9 51 54 -3 535 654 
10 33 11 22 444 407 
11 38 26 12 389 400 
      

N 11 11 11 11 11 
Sum 373 201 172 4898 4197 

Minimum 13 0 -3 326 190 
Maximum 58 54 58 562 654 

 
1. What is the average number offense per game for UM football team? 
 
 
 
2. What is the standard deviation of offense per game for UM football team? 
 
 
 
3. What is the median point difference (UM Score – Opponent Score)? 
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Frequency and Probability 
 
Suppose that you roll a pair of dice. The following table summarizes the 36 possible 
combinations for their sum. Use this table to answer the following questions. 
 
 

 
4. What is the probability of rolling a seven (i.e., total sum of two dice = 7)? 
 
 
5. What is the probability of rolling a five or less? 
 
 
6. What is the probability of rolling a 5 through 9 (5, 6, 7, 8, 9)? 
 
 
 
7. What is the probability of rolling two consecutive sevens (two sets of rolls)? 
 

Combination Sum
Absolute 

Frequency
Cumulative 
Frequency

(1,1) 2 1 1
(1,2) (2,1) 3 2 3

(1,3) (3,1) (2,2) 4 3 6
(1,4) (4,1) (2,3) 

(3,2)
5 4 10

(1,5) (5,1) (2,4) 
(4,2) (3,3)

6 5 15

(1,6) (6,1) (2,5) 
(5,2) (3,4) (4,3)

7 6 21

(2,6) (6,2) (3,5) 
(5,3) (4,4) 

8 5 26

(3,6) (6,3) (4,5) 
(5,4)

9 4 30

(4,6) (6,4) (5,5) 10 3 33
(5,6) (6,5) 11 2 35

(6,6) 12 1 36
Total 36
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Probability and Error  
 
8. A jury finding an innocent person guilty of a crime is an example of which type of error? 
 

a) Type I error (alpha) 
b) Type II error (Beta) 
c) Type III error 

 
 
Normal Distribution 
 

An automotive body manufacturer collects data on the height of their dash panel. They 
record all measurements as deviation from nominal (thus, the target value = 0). Based 
on a sample of 50 vehicles, they obtain the following information: Mean = 0.30 mm and 
Standard Deviation = 0.20 mm. The specification for dash height is 0 +/- 1 mm. 
 
 

9. What is the probability that a vehicle will have a height above the upper specification limit? 
 
 
 
 
10. Predict the part per million defects for dash panel height. 
 
 
 
 
 
11. What percentage of products should fall between +/- 2.0 sigma of the process mean (0.30 
mm)? 
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Simple Linear Regression and Correlation Analysis: 
 
Use the following scatter plots to answer the following questions and information from the 
Descriptive Statistics Table. 
 

    (UM Offense VS. Point Difference)  (Opponent Offense Vs. Point Difference) 
 
12. Which of the following has a strong negative correlation? 
 

a. UM Offense and Point Difference 
b. Opponent Offense and Point Difference 
c. Both (a) and (b). 
d. Neither (a) or (b). 

 
 
13. Which of the following statements appears true based on the available data? 
 

a. The UM defense (measured by Opponents offense) is a better predictor of point 
difference than UM Offense. 

b. The UM offense is a better predictor of point difference than UM Defense. 
c. Cannot tell based on the information given. 

 
14. What is slope of the best fit line between UM Offense and Point Dif ference? 
 
 
15. What is the y-intercept of the best fit line between UM Offense and Point Difference? 
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Answers to Practice Test 
 

1. Mean = 445.3 

2. StDev = 82.6 

3. Median = 12 

4. Pr (X = 7) = 6 / 36 = 0.167 

5. Pr (X <= 5) = 10 /36 = 0.278 

6. Pr (5 <= X <= 9) = 24 / 36 = 0.667 

7. Pr (Consecutive Sevens) = Pr (X = 7) * Pr (X = 7) = 0.167^2 = 0.028 

8. Say Guilty, truth = innocent à Type I error (alpha) 

9. Pr (X > USL) = Pr [Z > (1-0.3)/0.2] à Pr (Z > 3.5) = 0.00023  

10. Pr (Z < -6.5) + Pr (Z > 3.5) x 1M = (~0 + 0.00023 ) x 1M = 230 DPM 

 Note : Zlsl = (-1 – 0.3) / 0.2 = - 6.5. 

11. Pr (Z < 2) + Pr (Z < -2) = 0.97725 – 0.02275 = 0.9545 or 95.5% 

12. (b) Opponent offense and point difference has strong negative correlation R 

13. (a) UM defense has stronger correlation (-0.7) than UM offense (0.4) 

14. Slope (X – UM Offense, Y – Point Difference) = 0.098 

15. Y-Intercept (X – UM Offense, Y – Point Difference) = -28.102 
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Appendix B: Cumulative Normal Distribution Function (-Z values) 
(Some examples: Z = -2.11 = 0.01743; Z = 1.50 = 0.93319) 

 

 
 

Z 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00
-3.5 0.00017 0.00017 0.00018 0.00019 0.00019 0.00020 0.00021 0.00022 0.00022 0.00023
-3.4 0.00024 0.00025 0.00026 0.00027 0.00028 0.00029 0.00030 0.00031 0.00032 0.00034
-3.3 0.00035 0.00036 0.00038 0.00039 0.00040 0.00042 0.00043 0.00045 0.00047 0.00048
-3.2 0.00050 0.00052 0.00054 0.00056 0.00058 0.00060 0.00062 0.00064 0.00066 0.00069
-3.1 0.00071 0.00074 0.00076 0.00079 0.00082 0.00084 0.00087 0.00090 0.00094 0.00097
-3.0 0.00100 0.00104 0.00107 0.00111 0.00114 0.00118 0.00122 0.00126 0.00131 0.00135
-2.9 0.00139 0.00144 0.00149 0.00154 0.00159 0.00164 0.00169 0.00175 0.00181 0.00187
-2.8 0.00193 0.00199 0.00205 0.00212 0.00219 0.00226 0.00233 0.00240 0.00248 0.00256
-2.7 0.00264 0.00272 0.00280 0.00289 0.00298 0.00307 0.00317 0.00326 0.00336 0.00347
-2.6 0.00357 0.00368 0.00379 0.00391 0.00402 0.00415 0.00427 0.00440 0.00453 0.00466
-2.5 0.00480 0.00494 0.00508 0.00523 0.00539 0.00554 0.00570 0.00587 0.00604 0.00621
-2.4 0.00639 0.00657 0.00676 0.00695 0.00714 0.00734 0.00755 0.00776 0.00798 0.00820
-2.3 0.00842 0.00866 0.00889 0.00914 0.00939 0.00964 0.00990 0.01017 0.01044 0.01072
-2.2 0.01101 0.01130 0.01160 0.01191 0.01222 0.01255 0.01287 0.01321 0.01355 0.01390
-2.1 0.01426 0.01463 0.01500 0.01539 0.01578 0.01618 0.01659 0.01700 0.01743 0.01786
-2.0 0.01831 0.01876 0.01923 0.01970 0.02018 0.02068 0.02118 0.02169 0.02222 0.02275
-1.9 0.02330 0.02385 0.02442 0.02500 0.02559 0.02619 0.02680 0.02743 0.02807 0.02872
-1.8 0.02938 0.03005 0.03074 0.03144 0.03216 0.03288 0.03362 0.03438 0.03515 0.03593
-1.7 0.03673 0.03754 0.03836 0.03920 0.04006 0.04093 0.04182 0.04272 0.04363 0.04457
-1.6 0.04551 0.04648 0.04746 0.04846 0.04947 0.05050 0.05155 0.05262 0.05370 0.05480
-1.5 0.05592 0.05705 0.05821 0.05938 0.06057 0.06178 0.06301 0.06426 0.06552 0.06681
-1.4 0.06811 0.06944 0.07078 0.07215 0.07353 0.07493 0.07636 0.07780 0.07927 0.08076
-1.3 0.08226 0.08379 0.08534 0.08692 0.08851 0.09012 0.09176 0.09342 0.09510 0.09680
-1.2 0.09853 0.10027 0.10204 0.10383 0.10565 0.10749 0.10935 0.11123 0.11314 0.11507
-1.1 0.11702 0.11900 0.12100 0.12302 0.12507 0.12714 0.12924 0.13136 0.13350 0.13567
-1.0 0.13786 0.14007 0.14231 0.14457 0.14686 0.14917 0.15151 0.15386 0.15625 0.15866
-0.9 0.16109 0.16354 0.16602 0.16853 0.17106 0.17361 0.17619 0.17879 0.18141 0.18406
-0.8 0.18673 0.18943 0.19215 0.19489 0.19766 0.20045 0.20327 0.20611 0.20897 0.21186
-0.7 0.21476 0.21770 0.22065 0.22363 0.22663 0.22965 0.23270 0.23576 0.23885 0.24196
-0.6 0.24510 0.24825 0.25143 0.25463 0.25785 0.26109 0.26435 0.26763 0.27093 0.27425
-0.5 0.27760 0.28096 0.28434 0.28774 0.29116 0.29460 0.29806 0.30153 0.30503 0.30854
-0.4 0.31207 0.31561 0.31918 0.32276 0.32636 0.32997 0.33360 0.33724 0.34090 0.34458
-0.3 0.34827 0.35197 0.35569 0.35942 0.36317 0.36693 0.37070 0.37448 0.37828 0.38209
-0.2 0.38591 0.38974 0.39358 0.39743 0.40129 0.40517 0.40905 0.41294 0.41683 0.42074
-0.1 0.42465 0.42858 0.43251 0.43644 0.44038 0.44433 0.44828 0.45224 0.45620 0.46017
0.0 0.46414 0.46812 0.47210 0.47608 0.48006 0.48405 0.48803 0.49202 0.49601 0.50000
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Cumulative Normal Distribution Function (Positive Z-values) 
 

 

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56356 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976
3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
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Appendix C: Some Useful excel statistical functions 
(Note: an array represents a sample data set in excel) 

 
Count   =count(array) 
Sum   =sum(array) 
Mean (average)  =average(array) 
Median  =median(array) 
Standard Deviation =stdev(array) 
Variance  =var(array) 
Maximum  =max(array) 
Minimum  =min(array) 
 
Percentile  =percentile(array,value)  
   e.g., to find the 95th percentile à =percentile(array,0.95) 
 
Slope   =slope(Y array, X array) 
Intercept  =intercept(Y array, X array) 
 
Correlation  =correl(array 1, array 2) 
 
Normal Distribution Function: 

=normdist(X,mean,standard deviation, true) à returns the Prob(x < X) using the 
cumulative normal distribution based on the specified mean and standard 
deviation. 

 
=normsdist(Z) à returns the Prob(z < Z) using the standard normal cumulative 
distribution (mean of zero and standard deviation of one). 
 
=normsinv(probability) à returns the inverse of the standard normal cumulative 
distribution for a given probability. 

 
Random Number Generator – rand()  may be used to generate a random number 
between 0 and 1.  
 

 


